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Comparison of Growth Functions Within
and Between Lines of Mice Selected for Large
and Small Body Weight *
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Summary. Several criteria have been suggested for comparing different nonlinear growth functions to determine
which function gives the best quantitative description of a given set of observed sigmoid growth curves. These cri-
teria were then used to compare the logistic, Gompertz and Bertalanffy functions within and among lines of mice:
a control line (C,) and lines selected for large (Hg) and small (L) body weight at six weeks of age.

A general comparison of the three growth functions was based on the differences in residual variances of the respec-
tive functions fitted to the growth data of individual mice. Since the three functions differ primarily in the fixed
proportion of the asymptotic weight at which the inflexion point occurs, the growth function which will provide the
minimum residual variance among the three considered is the one which most closely approximates the observed
proportion. The results of this comparison indicated that the logistic function gave the best fit for both sexes of the
Hg and C, lines. While no significant differences in residual variances were evident in Lg males, the Bertalanffy func-
tion had the smallest residual variance in Lg females.

The four derived traits of each growth function analyzed individually were the asymptote (4), age at inflexion
(¢*), rate at which a logarithmic function of body weight changes with time (%) and mean absolute growth rate with
respect to body weight increase (v). The coefficient of variation among individuals within full-sib families was used to
compare the relative variability of the analogous traits estimated from the three growth functions. The coefficients
of variation of 4, ¢* and % calculated from the logistic function were significantly (P < .01) smaller than those from
both the Gompertz and Bertalanffy functions in all three lines, while there were no significant differencesintherelative
variability of v among the three lines. The genetic and phenotypic correlations between the analogous traits estimated
from two different growth functions were sufficiently high in most cases to conclude that the same trait was being
measured by the three growth functions. Each derived trait was analyzed for variation in lines, sexes, seasons and
respective interactions. The sources of variation generally exhibited similar levels of significance for the analogous
traits estimated by the three functions, although a few exceptions were found. These results suggest that although
the logistic function provided the best description of the growth data, the same general conclusions about differences
within and among the three lines would have been reached with any of the three functions. The four derived traits
of the logistic curve were used to describe quantitatively the differences in growth among the Hg, Lg and C; lines.

Introduction the point of inflexion (BrRoDY, 1945; TAYLOR, 1965).
Although this study is thus restricted to the remain-
ning three members of this family of curves, it is
noted that extensive statistical methodology has
been developed for the application of polynomial
regression to fitting growth curves (Rao, 1958;
SPRENT, 1967).

The question arises as to which of the three most
widely used growth functions having an inflexion
point is most appropriate for analysis of a given set

Growth functions have been used extensively to
describe mathematically curves of limited sigmoid
growth in various species. Parameter estimates of
growth curves have biological meaning when their
relative magnitudes may be used to assess the im-
portance of differences in growth rate due to genetic
or environmental factors. The four growth functions
which have been applied most extensively to animal
species are the monomolecular, logistic, Gompertz

and Bertalanffy curves. RICHARDS (1959) has shown
that these four functions are each a special case of
a general family of growth curves which differ pri-
marily in the proportion of final weight at which
the inflexion point occurs. The monomolecular
function will not be discussed here since its use is
limited to the description of growth subsequent to
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of data. BERTALANFFY (1957, 1960) advocated the
function he derived since it provides parameters
which are interpretable in terms of rates of anabolism
and catabolism. RICHARDS (1959) questioned this
interpretation on grounds that it is too restrictive
and thus incompatible with the growth curves of
many species. LAIRD, TYLER and BARTON (1965) sug-
gested that the Gompertz equation is the most
meaningful function based on the demonstration
that, over a wide age range of growth in the data
they analyzed, the first derivative of the Gompertz
curve gave a fit superior to the logistic.

It is apparent that objective criteria are necessary
in choosing the proper growth function for specific
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data. For a set of growth points taken on an indivi-
dual over a time interval, it can be shown that the
growth function which will provide the “best’” fit
among the three considered is the one which most
closely approximates the true proportion of final
size at which the inflexion point occurs. This pro-
portion is determined by the shape parameter of the
function (RICHARDS, 1959). “Best” is used in this
context to denote the goodness of fit criterion of
minimum error variance for the fitted curve. In
addition, the usual assumptions are made regarding
residuals in regiession analysis (DRAPER and SMITH,
1966). If the shape parameter is significantly differ-
ent among treatment groups, or if the shape para-
meter is significantly different from those assumed
in all of the three functions, it may be more infor-
mative to use Richards generalized curve (RICHARDS,
1959) or the generalized logistic (NELDER, 1961).

Following this reasoning, several criteria are
suggested for comparing the different growth func-
tions. Included in these criteria are comparisons to
determine if the same general conclusions concerning
the data would be obtained from application of any
of the growth functions. These criteria were then
used to compare the estimated parameters of the
logistic, Gompertz and Bertalanffy functions both
within and between lines of mice selected for large
and small body weight at six weeks of age.

Fitting of Growth Functions

The growth functions considered in this study and
some of their important properties are presented in
Table 1. The generalized growth function (RICHARDS,
1959) for the #® individual is a four parameter curve
of the form

Yul(f) = Ap[1 — by e kat]V@-m) 1+ E, (1), (1)
where

Ya(t) = body weight (grams) at time ¢ (days),

b, = time scale parameter of no specific biological
significance,

ks, = rate at which a logarithmic function of weight,
In 6, changes linearly per unit of time,

A, = asymptote or predicted final weight,

m, = the shape parameter,
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E,(f) = residual error term which is normally and inde-
pendently distributed with mean zero and
variance o2

It is evident from Table 1 that m == 2 yields the logistic
curve and m = 2/3 yields the Bertalanffy curve. As m
approaches unity in the limit, equation (1) reduces to
the Gompertz (BHATTACHARYA, 1966). Thus, the a priori
selection of one of these three curves fixes the inflexion
point relative to the final weight. In contrast, if m is
variable among genetic groups or environmental treat-
ments, then Richards curve should be used. From this
standpoint the choice of an appropriate growth function
may be crucial since the inflexion point, being the age
at which the absolute growth rate is a maximum, may
be closely associated with important biological events
such as the onset of sexual maturity (MoNTEIRO and
FALCONER, 1966).

Another parameter of the growth equation investigated
was the weighted mean absolute growth rate with respect
to body weight increase (RicHARDs, 1959), which is given
by

An
1 dy Apkn ’
7[[ (dt) W=t 1)~ (2)

o

Part of the difficulty in comparing growth equations
fitted to data is the rather special solutions which have
been employed for each curve (RIFFENBURGH, 1960;
FaBENS, 1965), although advances in obtaining general-
ized least-squares solutions have been accomplished
(BHATTACHARYA, 1966). It is therefore desirable to fit
all functions using a completely generalized least-squares
nonlinear estimation procedure. The maximum neigh-
borhood method (MarQuawrDT, 1963) was used in the
present study since it performs an optimum procedural
interpolation between the linearization method and the
steepest descent method (DRAPER and SmITH, 1966).
A single computer program (MARQUARDT, 1965) which
employs the maximum neighborhood method was
adapted to fit all growth functions.

It was found that the three-parameter functions
(e. g., logistic) generally converged rapidly, whereas the
four-parameter function (Richards) converged very
slowly in most cases. This was due, in part, to the high
correlations between some of the parameters in the
parameter correlation matrix of the four-parameter
curves, which suggested that a three-parameter fit might
be adequate (MARQUARDT, 1965). In addition, TiMoN and
Eisexn (1969) have compared the logistic (which was
generally the best fitting curve in the present study) and
Richards functions in lines of mice, completely unrelated
to those in the present study, selected and unselected

Table 1. Growth functions and some of their important properties

Prop. of Final Wt. at

Growth Body Weight Absolute Growth Rate Inflexion Point Inflexion Point
Function y(¢) dy|dt (y*, t*) mljl—m)
Bertalanffy A (1 — b ek 3hy [(AJy)Ys — 1] (%A, m3b ) 8/27
Gompertz A e7bekt kyin (Aly) (e 14, Ilk—) et

... ~ A Inbd
Logistic Al(1 + be k) ky (1 — y/4) (E DR 1/2
Richards A1 — bekepit-m ky[(AJy)t-m—1]/(1— [m”(l m4, b (b/( ;— ) ] Variable
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for high postweaning weight gain. The mean estimates
of the shape parameter, m, were not significantly different
from two in any line-sex subclass. A second comparison
showed that the residual variances of the logistic curves
were not significantly greater than those of the Richards
curves within line-sex subclasses. Thus, although Ri-
chards curve was considered and examined it was not
included in the comparisons of the present study because
of the reasons stated.

Source of Data

Rates of growth of three lines of mice, one selected
for large body weight at six weeks of age (Hj), one selected
for small body weight at six weeks of age (L) and a ran-
domly selected control line (C,) have been described by
I.anG and LEGATES (1969). Within each of four mating
seasons (summer, fall, winter and spring) individual body
weights measured to the nearest one-tenth of a gram
were taken from birth (day zero) to 30 days of age at
three-day intervals and at six-day intervals from 30 to
54 days. Data from the winter season were minimal in
number and were deleted from the present analysis.
An additional weight was available at 56 days of age
in all seasons and additional three-day interval measure-
ments were available in the summer for days 33, 39, 45
and §1. Thus, body weights at a total of 16 age periods
were obtained for all individuals in the fall and spring,
while weights at 20 age periods were obtained in the
summer. Figure 1 shows the observed growth curves in
the original data by line and sex pooled over seasons
(Lanc and LEGATES, 1969).

The diphasic nature of the growth curve of mice used
in this study (LaNG and LEGATES, 1969) suggested that
more precise results might be obtained if only data were
used subsequent to the end of the first phase of growth
(1521 days of age). Contrary to this expectation a com-
parison of the growth curves fitted from birth to 56 days
with those fitted from 21 to 56 days gave essentially
similar results. The reason for this is probably due to
the relatively small maximum of the preweaning growth
phase compared to the postweaning phase.

The logistic, Gompertz and Bertalanffy growth func-
tions were fitted to the growth data of each individual
from birth to 56 days. The frequency of mice which had
to be deleted (3.3%) because the iterative least squares
solution did not converge was not considered large enough
to create any bias in the results. The distribution of the
number of litters and number of observations by sex and
line is given in Table 2

T able 2. Distribution of number of litters and number
of mice by line and sex

Line Litters Males Females Total
Hy 35 76 81 157
¢ 55 124 139 263
Le 36 59 71 130
Total 126 259 291 550*

+ Twenty -three mice were deleted from analysis of Bertalanffy
curve because the solutions failed to converge.

Statistical Analyses

The first criterion considered was a general comparison
of the goodness of fit among the three functions within
genetic line and sex made by comparing the residual
variances due to lack of fit (¢2) of each function averaged
over individuals and seasons. Examination of this sta-
tistic indicates that the smaller it is the more precise
will be the predicted values of the fitted curve.
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Figure 1. Obscrved growth curves in the original data by line
and sex pooled over seasons (I.ANG and LEGATES, 1969)

The four derived traits of each growth function analyz-
ed individually were the asymptote (A), age at point
of inflexion (¢*), rate at which a logarithmic function of
body weight changes with time (%) and mean absolute
growth rate (v).

The within line analysis for each derived trait was
adjusted for season, sex and season X sex interaction
effects using a general least-squares procedure for unequal
subclasses (HARVEY, 1960). The data were then analyzed
to estimate the components of variance among and
within full-sib families for each derived trait within each
population. The linear model for the analysis of variance
was

X =p + f1+ en

where

X1, = observation (e. g., asymptote of logistic function)
on the »# individual from the Z* full-sib family
litter),

# = population mean,

fi = effect of the I full-sib family (/ =1,...,s),

ern = residual effect of the nth progeny from the I
family (v =1, ..., $1).

The effects in the model were assumed to be normally
and independently distributed with means zero and
variances ¢} and ¢Z. A preliminary analysis showed that
family X sex interactions were generally unimportant
and thus were pooled with the error sum of squares.

The magnitudes of the within litter variances (¢2) and
the coefficients of variation (C. V. = 100 ge/u) of each
derived trait were utilized as a second criterion in com-
paring the growth functions with regard to variation
among individuals within a family.

Under the assumptions of no epistasis the variance
components have the following expectations (WiLLHAM,

1963)
o} 1/203—!—1/46d+aam+a§m+aaam+u§,

i

62 = 1/206% + 3/4 6% + 02,
where
a2 = direct additive genetic variance,
o3 = direct dominance genetic variance,
g% = maternal additive genetic variance,
o, = maternal dominance genetic variance,
044, = direct-maternal additive genetic covariance,
o2 = maternal environmental variance,
62 = random environmental variance.

It will be informative to determine if the intraclass
correlations, 7; == 67/(0} + 0%}, for the same trait estimat-



254

ed from the three growth functions differ significantly
from each other. It would have been better if data were
available from paternal half-sib families which would
be unencumbered by dominance and maternal influences.
However, a comparison of the intraclass correlations
among the three growth functions should still be valid
for the specific purposes outlined.

In application to genetic selection experiments, the
growth function that provides a maximum 7; for a given
derived trait would be most desirable since this presum-
ably would maximize selection response. On the other
hand, if there are no significant differences among the
intraclass correlations, then using information from any
of the three growth functions should lead to similar
responses.

Analyses of covariance between the analogous traits
estimated by two different growth functions were con-
ducted using the same linear model except that cross-
product terms were obtained among and within full-sib
families. From these analyses the genetic correlations (7)
and phenotypic correlations (v5) were obtained (FaL-
CONER, 1960). These statistics provide a fourth criterion
for comparison of the growth functions. If the genetic
correlations between the analogous traits are not signi-
ficantly different from unity, then the traits are assumed
to be identical genetically. If only phenotypic corre-
lations are obtainable from the data and these are close
to unity, then similar conclusions are warranted on a
phenotypic scale.

A useful approach for comparing the growth functions
among treatments (line, sex, season and interactions in
this study) would be to assign randomly the growth data
of each progeny within a litter to be fitted by one of the
three growth functions. The randomization procedure
would assure uncorrelated errors and an analysis of
variance would determine the importance of treatment
x function interactions.

The present set of data does not lend itself to this method
of analysis since a sufficient number of mice were not
available for sampling within litters and sex. In addition
extreme heterogeneity of variances existed for the same
derived trait estimated by the different functions, which
would invalidate the tests of significance in the analysis
of variance. Therefore, an alternative approach was
considered whereby each parameter estimate within
a function was analyzed separately, and a subsequent
comparison made of the levels of statistical significance
attained for each effect in the model. In addition, a visual
appraisal of the means should reveal any obvious inter-
actions. The statistical model for the treatment com-
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parisons was
Xijrin = p + Li + Ry + (L R)ij + fiup + Sk

+ (L S)ir + (RS)jr + (L RS)ijr + ijhin,
where

Xijrin=o0bservation on the #* individual of the Akt sex
within the J# litter in the #*» genetic line and
jth season,

2 = population mean

L; = effect of the it? genetic line (i = 1, 2, 3),
R; = effect of the 54 season (j = 1, 2, 3},

Sk = effect of the k#h sex (k = 1, 2),

(L R)ij, (L S)ir, (RS)jr and (L R S);;rarerespectiveinter-
actions effects,

Sz = effect of the It¢ full-sib family within the (i 5)%
line-season subclass,

¢ijrln = random error.

All effects in the model were assumed fixed, except fy;j
and e;jzin which were random effects. In the analysis
of variance, lines, seasons and line X season interactions
are tested by the among litter mean square, whereas the
remaining sources of variation are tested by the within
litter variance.

Results and Discussion

General comparisons of growth functions: Residual
variances of the logistic, Gompertz and Bertalanify
functions fitted to the growth data of individual mice
and pooled over individuals and seasons are presented
in Table 3. The Hg and C, lines revealed a similar
pattern for both sexes in that the logistic function
had the smallest residual variances while the Bertal-
anffy function had the largest variances. This situa-
tion was exactly reversed in L, females, whereas
essentially no differences in the residual variances
were found among the functions in the L, males.
Therefore, based on the statistical criterion of most
precise prediction of a regression curve, the logistic
function would be selected for the Hy and C, lines
while the Bertalanffy function would be favored
only for females of the Lg line.

The observed and predicted mean body weights
at key ages are presented in Table 4. Body weight

Table 3. Residual variances of the Logistic, Gompertz and Berialanffy functions fitted to the growth data of individual
wmice and avevaged over individuals and seasons within line-sex subgvoupst*

H, c, L
Function Males Females Males Females Males Females
Logistic 0.834%% ** 0.585%* ** 0.805% % ** 0.628% ** 0.624N8, N8 0.626% **

(1,064)* (1,473) (1,760) (1,999) - (863) (987)
Gompertz 1.225%% 0.727% 1.014%* 0.688N8 0.610%8 0.560N8

(1,064) (1,173) (1,760) (1,999) (863) (987)
Bertalanffy 1.473 0.809 1.151 0.719 0.613 0.517

(961) (1,130) (1.640) (1,986) (820) (974)

*+ Values in parentheses are degrees of freedom obtained by
fitted by the number of individuals

multiplying the degrees of freedom for each individual curve

++ Levels of significance (based on F tests) designated by a superscript attached to the residual variances are interpreted
as follows: logistic superscript gives F tests of logistic versus Gompertz and logistic versus Bertalanffy respectively; Gom-

pertz superscript gives test of Gompertz versus Bertalanffy
* P < .05, ** P < .01, ¥8Not significant {P > .05)
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Table 4. Observed and predicted mean body weights (g) at key ages within line and sex avevaged over seasons
B Predictedw S va;dAiitizrtﬂe’&“ﬁ -
Trait Observed T T e e e Observed T T T T T T e e e
Logistic Gompertz Bertalanffy Logistic Gompertz Bertalanffy

Hg Males - ) Hg Females
Birthweight 1.59 2.05 1.51 1.20 1.50 217 1.68 1.43
Weaning weight  9.27 9.73 10.51 11.01 8.82 9.23 9.76 10.04
27-day weight 13.12 13.48 14.10 14.51 11.88 12.37 12.70 12.90
42-day weight 22.97 22.44 22.49 22.65 19.93 19.39 19.25 19.31
56-day weight 26.60 26.93 28.24 28.68 22.36 22.77 23.51 23.90

C; Males - - C, Females
Birthweight 1.48 2.17 1.71 1.45 1.45 218 1.74 1.53
Weaning weight 8.75 9.08 9.79 10.20 8.40 8.75 9.31 9.64
27-day weight 11.61 12.27 12.87 13.23 10.80 11.46 11.85° 12.14
42-day weight 20.34 19.93 20.10 20.30 17.49 17.08 17.16 17.44
56-day weight 23.45 24.01 25.17 25.63 19.15 19.62 20.38 20.97

L; Males - Lg Females -
Birthweight 1.28 2.17 1.88 1.78 1.22 2.11 1.82 1.71
Weaning weight  7.17 7.04 7.56 7.98 6.93 6.65 7.12 7.55
27-day weight 8.62 9.12 9.63 10.08 8.01 8.46 8.91 9.38
42-day weight 14.78 14.37 14.72 15.18 12.91 12.70 12.97 13.53

17.81 18.67 19.36 15.01 15.82 16.61

56-day weight

17.30

at 27 days of age is included since it approaches the
average estimated weight at the point of inflexion
(Table 8). The predicted means of the logistic func-
tion were closest to the observed means for weights
at days 21, 27 and 56 in all line-sex subgroups with
the exception of Ly females. Although the predicted
means of the logistic curve for 42-day body weight
generally showed the greatest deviation from the
observed means, the differences were relatively small.
The predicted mean birth weights of the logistic
function had the largest deviation from the observed
means. Thus, even though the logistic function
provided the smallest residual variance in four out
of six line-sex subgroups it did not provide the best
prediction of body weight at all ages.

A plot of the residuals for all of the functions being
fitted revealed a systematic non-random trend for
all line-sex-season subgroups. This result was prob-
ably due to the early postweaning growth depression
characteristic of the three lines (LANG and LEGATES,
1969) and indicates the difficulty which can be
encountered in a priori fitting of growth functions.

Comparison of variability among individuals: The
second statistical criterion suggested is a comparison
of the variability among individuals for the analogous
trait estimated from the three growth functions.
This was done separately for the Hg, C, and Lg lines.
The within litter variances and coefficients of varia-
tion presented in Table 5 were considered appropriate
measures of wvariability. Within litter variance
measures absolute variability within families and
may be subject to scaling effects (e.g., correlation
between mean and variance) as well as functional
variability. Therefore, the coefficient of variation
was used as a measure of relative variability to elimi-

15.19

nate scaling effects. The ratio of the variances on
a logarithmic scale (approximated by squaring the
ratio of the coefficients of variation) has an I' distri-
bution (LEWONTIN, 1966), and this statistic was used
to test the null hypothesis of no difference in relative
variability between the same trait estimated from
two growth functions.

The coefficients of variation of the asymptote, age
at inflexion and rate obtained from the logistic
function were significantly (P < .01) smaller than
those from both the Gompertz and Bertalanffy func-
tions in all three populations (Table 5). For these
traits the coefficients of variation computed from the
Gompertz function were generally less than those
of the Bertalanffy curve, but the level of significance
varied. Absolute mean growth rate revealed no sig-
nificant differences in relative variability among the
three growth curves.

It would appear from these results together with
the information on the residual variances of the non-
linear regression curves that for these growth data,
the logistic function provides the best prediction of
growth with a minimum of extraneous variation. As
noted previously, Timon and E1seN (1969) found that
the Richards function, when compared with the logi-
stic function, did not significantly increase the predic-
tion of the growth curve in two other lines of mice.

Within population genetic and phenotypic compari-
sons: Intraclasscorrelationsamong full-sib families (7y)
and their standard errors are listed in Table 6. The
comparison of chief interest is differences in 7, for the
same trait computed from the three functions. Diffe-
rences between functions observed for the intraclass
correlation of all four traits were within the limits of
the sampling errors of this experiment. This result
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Table 5. Comparison of within litter varviances (o) and coefficients of variation (C. V.) calculated within lines forv the

Sfour devived traits of the three growth functions

H, C, L,
Trait Function [ BN AS o, c.v. o2, C. V.
Logistic 4.36(119)* 7. 73Kk ok 4.86(205) Q.30%* ** 4.37(91) 11.03%% %*
Asymptote Gompertz  20.54(119) 13.69%8 20.56{205) 15.7788 20.19(91) 18.73%*
(4) Bertalanffy  28.75(109) 14.10 33.43(196) 17.52 51.03(87) 24.62
Age at Logistic 5.38 8375, %% 816 10.67%%,** 4235 IFRLVALA L
Inflexion Gompertz  16.58 16,1858 24.44 20.71* 38.24 23.36%
Point (#*) Bertalanffy 14.45 14.57 26.79 23.65 58.147 29.89
Logistic 5.56X 1078 B.47*¥** 8754075 {0.84%*% %% 554X 1075 10.38%* **
Rate (&) Gompertz 3.24x107° 12.50* 4.79x 1078 15.16* 3.82x 1078 16.67%*
Bertalanffy  2.21 X107  14.73 3.57X10"%  18.40 3.48x107%  22.61
Mean Abso- Logistic 1.38x1073  9.25¥5 NS 2.04x107% | 13.413% 88 081x 1073 1274 N8
lute Growth Gompertz 1.02x 1073 8.60N8 1.55X 1078 12,478 0.65x107%  11.87N8
Rate (o) Bertalanffy  0.94x10°3  8.65 1.40x 1073 12.26 0.62x107®  11.91

* Values in parenthcses are degrees of freedom for the four traits within a genetic line !

++ Levels of significance (based on F tests) designated by a superscript attached to the coefficients of variation are
interpreted as follows: logistic superscript gives tests of logistic versus Gompertz and logistic versus Bertalanffy, respectively;
Gompertz superscript gives test of Gompertz versus Bertalanffy

* P05, ** P< .01, Y8 Not significant (P > .05)

Table 6. Intraclass covvelations (rg) and their standard

evvors computed within lines for the four derived traits
of the three growth curves

Trait Function H, Cy Ly
Asymp-  Logistic 21 4-.09 .16 4-.06 .34 4 .10
tote (4) - Gompertz A1 4 .08 .21 4-.07 .20 4 .09
Bertalanffy .224-.09 .234.07 .32 + .10
Age at Logistic 44 4 .09 424 .07 .34 4 .10
Inflexion Gompertz 41 4.08 384 .07 .33 4 .10
Point (¢*) Bertalanffy .49 4+ .09 .39+ .07 .39 4 .08
Logistic 214 .08 .244.07 .30 4 .10
Rate (k) Gompertz 364 .09 .384.07 .37 + .09
Bertalanffy .42 4 .09 .41 4 .07 .38 4 .10
Mean
Absolute Logistic .33 4.08 13 4.06 .17 4 .10
Growth  Gompertz 41 4-.07 .18 4.06 .20 4 .09
Rate (v) Bertalanffy 454 .09 .21 4-.07 .21 4 .08

was consistent for the Hg, C; and L, lines. There was
some tendency for 7; to be larger with the Bertalanffy
curve for the rate and mean absolute growth rate
traits, but this was not significant.

It was indicated earlier that 7, represents the pro-
portion of phenotypic variance due to genetic and
maternal factors. Therefore, no matter which curve
was considered, the same general statements may be
made concerning the relative magnitude of combined
genetic and maternal factors influencing a specific
derived trait.

The €, line provided estimates of the intraclass
correlation which were least likely to be biased by
directional selection. The combined genetic and mater-
nalinfluences accounted for a larger proportion of the
total variation for age at inflexion point (#*) and
rate (k) than for final weight (A) and mean absolute

Table 7. Genetic (rg) and phenotypic (rp) covvelations between the same derived trait estimated from two different growth

Sunctions
Hy 124 Ls
Trait Functions Correlated e e i i i
rg 3 8. €. rp 7g -+ 8. €. rp rg-fs.e
Logistic-Gompertz .61 4 .50 B5¥* 71 4 48 .81 88 4 .39
Asymptote (4) Logistic-Bertalanffy A0 - .48 .64 .35 + .48 .65 66 + .38
Gompertz-Bertalanify .84 4- .66 95 .93 + .47 .95 95 4 .42
Age at Inflexion Logistic-Gompertz .99 - .32 99 .99 4 .26 98 .99 + .40
Point (¢*) Logistic-Bertalanffy .99 4 .29 98 .99 4 .26 .96 .96 + .38
Gompertz-Bertalanffy .99 -+ .28 99 .99 4 .26 .99 .99 4 .36
Logistic-Gomperiz .90 4+ .51 .93 .94 4 .37 94 .86 4 .40
Rate (k) Logistic-Bertalanify 75 4+ .53 .83 .85 4+ .36 87 .77 £+.39
Gompertz-Bertalanffy .99 4 .38 99 .99 4-.29 .99 99 + .37
Mean Absolute Logistic-Gompertz 99 4 .39 98 .97 4 .63 .98 98 + .69
Growth Rate (v) Logistic-Bertalanffy .08 4 .41 97 .92 4 .63 .96 94 4 .73
Gompertz-Bertalanffy 99 4- .34 99 .99 + .53 99 .99 4 .65

** All phenotypic correlations are significant at P < .01
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growth rate (v). Similar full-sib correlations have
been reported for final weight and rate obtained by
fitting the logistic function to individual growth data
of mice (CARMON, 1965).

The genetic (r;) and phenotypic (#,)} correlations
between the analogous traits estimated from two
different growth functions (Table 7) were sufficiently
high in most cases to conclude that the same trait
was being measured by the three growth functions.
The only case where the genetic correlations differed
significantly from unity involved the estimated
asymptotes of the logistic and Bertalanffy curves in
the H; and C, lines, respectively. An examination of
the family means indicated that the larger variation
among individuals within families for the Bertalanffy
asymptotes caused changes in ranking of family
means which would explain the low genetic correla-
tions,

‘Comparison among populations: Means of the four
derived traits for each growth function are given in
Table 8 by line-sex subclasses averaged over seasons,
and analyses of variance are presented in Table 9.
The sources of variation generally exhibited similar
levels of significance for the same trait estimated by
the three functions, although a few exceptions may
be noted. Seasonal effects were significant (P < .01)
for the asymptote and age at inflexion point of the
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logistic function, but were not significant (P > .05)
for the Gompertz and Bertalanffy curves. Examina-
tion of seasonal means for these traits revealed the

. same ranking of means for the three curves. Similar

results were encountered in line differences for age
at inflexion, line X sex interaction for the asymptote
and season X sex interaction for rate. Failure to
reach statistical significance in the cited cases was
probably due to the increased residual variance in
these traits derived from the Gompertz and Berta-
lanffy functions.

Examination of Table 8 clearly shows that although
absolute means differed considerably for the ana-
logous traits estimated by each curve, relative rank-
ing of the means was unaltered. It should be noted
that the asymptote means of the logistic are under-
estimated. This is simply a function of the fact
that the mice in this study were weighed to 56 days
only, whereas growth of mice are known to continue
beyond this age. However, the criteria discussed
ecarlier clearly favor the logistic curve.

The three fitted growth functions for the males
and females of the Hy, C; and Lg lines are plotted in
Figure 2. It is difficult to distinguish- the three
growth functions for the same line-sex subclass
within thé range of birth (day zero) to 56 days, while
the growth rates of the three lines are clearly dis-

Table 8. Means and standavd evvovs of A, t*, k and v for each growth function by line and
sex avevaged over seasons

Asymptote (g)

Age at Inflexion
Point (days)
t*

A
Line Function Males Females Males Females
Logistic 29.25 4 .25 24.58 4- .24 28.85 4- .33 27.00 + .32
Hy Gompertz 36.72 + .52 29.46 4- .50 27.12 4- .58 23.90 + .56
Bertalanify 42,34 4 .72 33.66 4- .68 24.73 4 .66 21.96 4+ .62
Logistic 26.42 + .19 - 20.93 £ .18 28.87 4 .26 24.97 4 .24
C, Gompertz 33.29 + .41 24.36 + .38 26.99 4- .45 21.12 4 .43
Bertalanffy 36.68 + .56 27.39 4 .51 24.91 - .51 18.94 4+ .47
Logistic 20.76 -+ .28 1714 + .25 30.63 4- .37 27.05 4 .34
L Gompertz 27.19 + .39 20.74 4- .54 29.39 4 .66 23.48 4- .60
Bertalanffy  33.28 4 .80 24.23 &£ .72 28.80 F .73 21.69 F .66
- o ) - Wﬁ(gﬂ;lvean Absc;iute Growth
Rate (In ©/day) Rate (g/day)
k v
Line Function Males Females Males Females
Logistic .0850 + .0010 .0862 - .0009 440 + .005 .358 4 .004
H, Gompertz .0446 4 .0007 0455 £+ .0007 .402 4- .004 .332 4 .004
Bertalanffy  .0311 4 .0007 .0321 - .0006 .386 1+ .004 .318 ¥ .004
Logistic .0842 4 .0008 .0867 -+ .0007 .370 - .004 .302 4 .003
G Gompertz .0422 + .0005 L0481 -+ .0005 .343 4- .003 .288 -+ .003
Bertalanffy  .0294 £ .0005 .0354 & 0005 .330 & .003 .280 + .003
Logistic .0704 4 .0011 .0717 + .0010 .243 -+ .005 .204 4 .005
Lg Gompertz .0350 + .00038 .0392 4 .0007 .230 4 .005 1197 + .004
Bertalanffy  .0237 £ .0008 .0286 -+ .0007 224 £ 004 193 & .004
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Table 9. Analyses of vaviance of the four devived traits for each growth function

Mean Squares

Asymptote Age at Inflexion Point o
Source D. F. Logistic Gompertz Bertalanffy = Logistic Gompertz Bertalanffy
Line (L) 2 2,472.59*%* 2,851.16*%* 2,823.79%* 161.10** 262.33 449.80*
Season (R) 2 226.27*%* 112.84 131.60 166.95** 256.53 245.50
LXR 4 18.79 65.10 165.05 103.07* 313.64* 364.05*
Among Litters/(L X R) 117 9.42 43.34 88.78 32.49 90.44 118.87
Sex (S) 1 2,138.04** 6.191.58** 10,282.77*%¥% 1,225.02%* 3,160.94** 3,853.74%*
LxS 2 17.24% 37.70 62.91 53.49%* 100.08* 191.99**
R xS 2 9.76 0.62 26.81 6.71 17.66 0.38
LxRXS 4 2.94 21.59 29.99 12.91 25.64 21.93
Within Litters 415* 4.61 20.47 35.96 8.27 25.21 30.27
Mean Squares T
Rate x10? Mean Absolute Growth Rate X 10 o
Source D. F. Logistic Gompertz Bertalanffy  Logistic Gompertz Bertalanffy
Line (L) 2 118.01** 30.32%* 16.67%* 106.74%* 82.07** 69.49%*
Season (R) 2 38.04** 14.82%* 8.88%* 23.06** 17.15%* 13.58%*
L XR 4 9.60* % 7.28%* 4.86* 3.81%* 2.86* 2.26%*
Among Litters/(L X R) 117 1.67 1.46 1.21 0.32 0.29 0.28
Sex (S) : 1 17.74%% 20.47** 23.03** 35.60%* 24.50%** 18.31%*
L xS 2 3.70%* 2.78%* 2.82%* 1.42%* 1.07%* 0.99%*
R XS 2 3.84%* 1.47 0.95 1.26** 0.67%* 0.49%*
LxRXS 4 2.08* 1.42% 1.35%% 0.24 0.19 0.16
Within Litters 415* 0.71 0.41 0.32 0.16 0.12 0.11

* P05, ¥ P01
+ D. F. = 392 for Bertalanffy function

tinguishable based on a comparison within any of
the three functions. These results were perhaps
anticipated because of the high positive phenotypic
correlations between the analogous traits of the
three curves which were discussed previously and
again suggest that any of the three functions would
have described the data adequately regarding discri-
mination among treatments.

Correlated responses in the characteristics of the
growth curve of the Hg and Lg lines due to divergent
selection for six-week body weight have been dis-
cussed by Lang and LEGATES (1969). These results
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Figure 2. Fitted growth curves for Hy, C; and Ly males and
females averaged over seasoms

may be further quantified by comparison of the
estimated parameters of the growth curves. The
logistic function was used for this purpose since it
fit the data best based on the criteria outlined earlier.

Large seasonal, line and sex differences were found
for the four traits (Table 9). Seasonal and season X
line interaction variation in the growth curves of
these populations were indicated by Lanc and LEca-
TES (1969).

Lamrp and Howarp (1967) fitted the Gompertz
curve to means of several inbred lines of mice and
some of their reciprocal crosses. Although significant
differences were found among lines in several of the
growth parameters, individual and litter variation
was not taken into account in their study. It can
be shown, for example, that in general the average
of several Gompertz functions will not yield a Gom-
pertz function (MERRELL, 1931 ; WINSOR, 1932).

Relative to the control line, mean absolute growth
rate (v) was significantly (P < .01) reduced in the
Lg line and significantly (P < .01) increased in the
Hgline. The decreased mean absolute growth rate in
the L; line relative to the control line was approxi-
mately twice as great as the increased v in the Hy
line. This result reflects the asymmetry of selection
line divergence from the control population for six-
week body weight (LEGATES and FARTHING, 1962;
Lane and LEGATEs, 1969). The asymptote (A4)
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means also reflect the asymmetric response to selec-
tion for body weight which is slightly greater in males
than in females. Mean absolute growth rate was
consistently larger in males than in females, but the
magnitude of the difference was less in the L line
than in the Hg line as evidenced by the significant
(P << .01) sex X line interaction. However, on a per-
centage basis the differences between males and
females were similar in all three lines.
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the growth curve has altered its characteristics as
determined by four derived traits of the fitted logistic
growth function. The four traits are correlated
phenotypically and genetically so that concomitant
mean changes due to short-term selection could be
predicted. However, in a long-term selection experi-
ment these correlated responses might not be ade-
quately predicted from the genetic correlations since
the actual responses differed somewhat depending

Table 10. Phenotypic and genetic corrvelations among the four devived traits

of the logistic function calculated within genetic line*

A tot Age at Mean Absolute
Line (jgfmp ote Inflexion Point Growth rate
(%) Rate (&) (@)
H, - 40 4 .37 —.28 4 .57 77 4 .50
Asymptote (4) C, — .28 4 .31 —.47 4 .46 .26 - .54
. L — 44 + .37 —.76 4 .50 .58 4 .46
Age at Inflexion Hj L3 %* — —.69 + .47 —.69 + .37
Point (¢¥) (o 43k* — —.79 &£ .36 —.64 4 .40
I, .58%% - —73F .52  —.22F .49
H, —.20*% — .73k — .83 + .51
Rate (%) on —.21% —.77** — .73 + 46
Ly  —.43** —.72%% — .09 X .56
Mean Absolute  H, Ny A —.39** .69** -
Growth Rate (v) C, Y R —.38** J72%* —
Lg S7** —.09 48** —

* P .05, ** P .01

* Genetic correlations and standard errors above the diagonal and phenotypic correlations be-

low the diagonal

Rate of growth may be expressed as a logarithmic
function of weight change with respect to time;
Imf=mIn[(4 —y)/y]=Inb— k%t in the logistic
case. The difference between the means of & in the
Hy and C; lines was not significant. In contrast the
rate (k) was significantly lowered in the Lg line
relative to the C; line. In all lines 2 was larger in
females than in males which is in agreement with the
results of LAIRD and HowarDp (1967).

Age at inflexion point (¢*) was significantly in-
creased in both Hy and Lg females and in Ly males.
However, no change in age at inflexion was observed
between Hg and C, males. The corresponding body
weights at the points of inflexion, obtained by linear
interpolation of the observed means, were 14.69,
12.80 and 9.92 g for Hy, C; and Ly males and 11.88,
9.93 and 8.00 g for Hg, C; and L, females, respectively.
Thus, selection for six-week body weight has in-
creased the weight at point of inflexion in both sexes of
the Hy line while decreasing it in the Lg line. The age
at point of inflexion was greater in males than in
females for all three lines. T1MON (1968) reported a sim-
ilar sex difference in age at inflexion in an outbred
strain of mice.

These results demonstrate that selection for a single
age-point (large or small six-week body weight) on

on the direction of selection and the sex of progeny
(e.g., age at inflexion point).

Phenotypic and genetic correlations among the
four derived traits of the logistic function calculated
within lines are presented in Table 10. The genetic
correlation estimates are of limited utility since,
aside from having large standard errors, they may
contain maternal and dominance effects. However,
the correlations display a definite pattern. Not only
are the genetic (or phenotypic) correlations between
two traits of the same sign for each line, but all of
the genetic and phenotypic correlations for a given
pair of traits are of the same sign.

Direct single trait selection for the estimated para-
meters of the growth curve would be of interest in
determining the amount of additive genetic variation
in these traits, and the correlated responses to selec-
tion for the other parameters and for specified points
on the growth curve. The extent to which the pattern
of growth can be altered more efficiently than by
selecting for a single trait may be studied by selecting
for an index which combines genetic information on
the entire set of parameters of the growth function.
TarLLis (1968) has suggested an alternate procedure
which could be compared experimentally.
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